
AN ITERATIVE ALGORITHM FOR DIFFERENTIALLY PRIVATE
k-PCA WITH ADAPTIVE NOISE

Johanna Düngler∗ Amartya Sanyal∗

ABSTRACT

Given n i.i.d. matrices Ai ∈ Rd×d that share a common expectation Σ, the objective of Stochas-
tic Principal Component Analysis (PCA) is to identify a subspace of dimension k that captures the
maximum variance in Σ. Private PCA aims to find this subspace while ensuring the privacy of each
individual instance Ai. However, even when estimating only the top eigenvector, most existing tech-
niques either (i) require the number of samples n to scale super-linearly with d, even for Gaussian
data, or (ii) suffer from excessive (privacy) noise when the randomness in each Ai is small. Liu et al.
[2022] overcame both limitations for sub-Gaussian data when estimating the top eigenvector with
their algorithm DP-PCA. We propose an extension of their algorithm that estimates the top k eigen-
vectors for arbitrary k ≤ d, while still overcoming challenges (i) and (ii). Furthermore, for k = 1,
we recover the utility of DP-PCA, which for sub-Gaussian data achieves nearly optimal statistical
error rates even for n = Õ(d).

1 Introduction

Principal Component Analysis (PCA) is an important statistical technique widely used for dimensionality reduction,
data visualization, and noise filtering. Given n data points {xi}ni=1, standard PCA inputs a single matrix

∑
i xix

⊤
i

and computes its dominant eigenvectors. The number of eigenvectors PCA computes (i.e. the dimension of the
subspace) is generally considered to be an input parameter to PCA, however, we often refer to k-PCA, to emphasize
we are interested in the dominant k eigenvectors. In this work, we consider the problem of Stochastic (Streaming)
k-PCA, which differs from the standard setting in two important aspects. First, instead of inputting a single matrix, we
input a stream of matrices A1, . . . , An, processing each matrix sequentially and then discarding it and second, these
matrices are sampled independently from distributions that share the same expectation Σ. Given this input, the goal of
a Stochastic (Streaming) k-PCA algorithm is to approximate the dominant k eigenvectors of Σ.2

In the non-private setting, Oja’s algorithm, discussed in Algorithm 1, is known to be nearly optimal for this prob-
lem. Jain et al. [2016] showed that Algorithm 1 recovers the top eigenvector with approximation error Θ̃(

√
d/n)

where d refers to the dimension of the input and n to the number of samples. Oja’s Algorithm can be extended to
k > 1 by simply initializing a matrix Q0 ∈ Rd×k instead of a vector ω0, and performing the Gram-Schmidt process
to obtain an orthogonal matrix after every ascent step instead of vector normalizing. Huang et al. [2021] extended the
utility guarantee to this setting and achieved nearly optimal error of

∥V̂kV̂
⊤
k − VkV

⊤
k ∥ = Θ̃(

√
dk/n)

under certain boundedness assumptions (Assumptions A.1 to A.3) where each column of V̂k ∈ Rd×k represents an
approximate principal component and Vk ∈ Rd×k is the matrix containing the true top k eigenvectors of Σ.

In the private setting, there are several existing DP-PCA algorithms. Though mostly designed for the non-stochastic
setting, most of these works [Blum et al., 2005, Chaudhuri et al., 2013, Dwork et al., 2014, Hardt and Roth, 2013]
achieve suboptimal error rates of O(

√
dk/n + d3/2k/(εn)) when extended to the stochastic setting. Another issue

with these algorithms is that the added noise does not scale with the inherent randomness in each data point. To
understand this, consider the following example.

∗Department of Computer Science, University of Copenhagen
2For purpose of brevity, we will refer to it as stochastic k-PCA and ignore the adjective “streaming”.

Algorithm 1 OjasAlgorithm({Ai}ni=1)
Choose ω0 uniformly at random from the unit sphere
for t = 1, . . . , n do

w′
i ← wi−1 + ηiAiwi−1

wi ← w′
i/∥w′

i∥2
end for
return wn

Example 1.1. In the spiked covariance model, we sample i.i.d. matrices Ai ∈ Rd×d that contain both a deterministic
(low-rank) signal and random noise that leads the observed matrices Ai to be full-rank. The signal takes the form

UΛU⊤ where Λ = diag(λ1, . . . , λk)

and the noise comes from Gaussian vectors ηi ∼ N (0, σ2Id). In the rank 1 setting one way to sample from the spiked
covariance model would be to sample i.i.d. vectors xi = si + ηi, with si = v (a unit vector) with probability 1/2 and
−v otherwise, and ni ∼ N (0, σ2Id). We then define the matrix Ai = xix

⊤
i which captures both the deterministic

signal component vv⊤ and noise terms that scale with σ. As the (data) noise level decreases (i.e. σ → 0) the data
becomes nearly deterministic and we have Σ = E[Ai] ≈ Ai for all i. In such low-noise regimes, it would be natural
to expect that less privacy noise is needed to preserve differential privacy. However, most algorithms for private PCA
add (privacy) noise either based on static clipping or by assuming that any input has a maximum norm of at most one.
Consequently, we need to add (privacy) noise that scales with this clipping threshold or with maxi ∥Ai∥, even if the
data passed to the algorithm has no randomness at all (i.e. E[Ai] = Ai).

The DP-PCA algorithm by Liu et al. [2022] simultaneously achieves both statistically optimal error rates for sub-
Gaussian distributions, including the spiked covariance case, while only requiring Õ(d) samples. However, their
algorithm is limited to estimating the top eigenvector. Cai et al. [2024] developed an algorithm that is statistically
optimal for the spiked covariance model, even when computing k principal components. However, it only fulfills
differential privacy when the data is sampled from the spiked covariance model.

Our Contribution Our main contribution is that we introduce a novel algorithm, k-DP-PCA, that is simple to
implement, ensures privacy for any input data, requires only a linear number of samples in d, and adds (privacy) noise
that scales with the randomness in the input data.

From a technical perspective, our algorithm is based on the deflation method, arguably the most natural reduction-
based approach to k-PCA. The deflation method repeatedly employs a subroutine to estimate the top eigenvector and
then projects out the previously computed eigenvectors from the matrix. By repeating this approach k times, such
methods can compute k eigenvectors. Our approach is inspired by Jambulapati et al. [2024], who proved significantly
sharper utility bounds for deflation methods in k-PCA. However, their results can only be directly applied for non-
stochastic PCA, meaning that we would need direct access to Σ.

Our technical contributions are three-fold: We first extend the result of Jambulapati et al. [2024] to the stochastic
setting and in the process introduce the stochastic ePCA oracle in Definition 3. In Appendix B, we state and prove the
full result for the stochastic deflation problem which we believe may be of independent interest. Second, we propose
an adapted version of the DP-PCA [Liu et al., 2022] in Algorithm 3. And finally, through a novel analysis of non-
private Oja’s algorithm, we demonstrate that our adapted approach meets all the essential requirements for stochastic
deflation. The full results for this are presented in Appendix C. Combining all of these, we present our main algorithm
in Algorithm 2 and the main utility bound in Theorem 2.1 which recovers the utility guarantees of Liu et al. [2022] in
the k = 1 case.

2 Problem formulation and Main Theorem

In this work, our algorithm inputs n matrices A1, . . . , An in Rd×d and outputs a matrix U ∈ Rd×k. The columns of
U are pairwise orthogonal and of unit norm. Throughout this work, ∥ · ∥2 refers to the operator norm and ⟨·, ·⟩ refers
to the Frobenius inner product. Specifically, for any matrices A,B, ⟨A,B⟩ = Tr(A⊤B). Before discussing the main
result of our work, we first formalise the problem setting including the assumptions on data in Assumption A and the
utility metric in Definition 2.
Assumption A ((Σ, {λi}di=1,M, V,K, κ, a, γ2)-model [Liu et al., 2022]). Let A1, . . . , An ∈ Rd×d be a sequence of
(not necessarily symmetric) matrices sampled independently from distributions that fulfill the following assumptions
with a PSD matrix Σ ∈ Rd×d, matrices Hu ∈ Rd×d, and positive scalars M,V,K, κ, a, γ2:

2

A.1 E[Ai] = Σ, with Σ a PSD matrix having eigenvalues λ1 ≥ · · · ≥ λd ≥ 0, corresponding eigenvectors v1, . . . , vd,
0 < ∆ = mini∈[k](λi − λi+1) and κ′ := λ1

∆ .

A.2 ∥Ai − Σ∥2 ≤ λ1M almost surely.

A.3 max{∥E[(Ai − Σ)(Ai − Σ)⊤]∥2, ∥E[(Ai − Σ)⊤(Ai − Σ)]∥2} ≤ λ2
1V .

A.4 max∥u∥=1,∥v∥=1 E
[
exp

((
|u⊤P (A⊤

i −Σ)Pv|2
K2λ2

1γ
2

)1/(2a))]
≤ 1, where

Hu :=
1

λ2
1

E[(Ai − Σ)uu⊤(Ai − Σ)⊤], and γ2 := max
∥u∥=1

∥Hu∥2.

The first three assumptions Assumptions A.1 to A.3 are quite mild (and standard), as they are needed for concentration
of measure (under the matrix Bernstein inequality [Tropp, 2012]) and therefore also required for Oja’s algorithm
even when privacy is not required. Assumption A.4 guarantees that for any unit vectors u, v, and projection P with
probability 1− ϑ

|u⊤P (Ai − Σ)Pv|2 ≤ K2λ2
1γ

2 log2a(1/ϑ)

for some sufficiently large constant K. This bound controlling the size of the bilinear form, can be seen as a Gaussian-
like tail bound, which tells us that the magnitude of the projection of the Ai along any direction is bounded with high
probability. Further, we use the add/remove model of differential privacy, namely
Definition 1. ([Dwork et al., 2006]) Given two multisets S and S′, we say the pair (S, S′) is neighboring if |S \S′|+
|S′ \ S| ≤ 1. We say a stochastic query q over a dataset S satisfies (ε, δ)-differential privacy for some ε > 0 and
δ ∈ (0, 1) if

P (q(S) ∈ A) ≤ eεP (q(S′) ∈ A) + δ

for all neighboring (S, S′) and all subsets A of the range of q.

Our algorithm outputs a matrix U ∈ Rd×k, where each column represents an approximate principal component, and
all columns are mutually orthogonal. We measure the utility of U by comparing it to Vk, the matrix containing the true
top k eigenvectors of Σ as columns.
Definition 2. We say U ∈ Rd×k is ζ-useful if U has orthonormal columns and

⟨UU⊤,Σ⟩ ≥ (1− ζ2)⟨VkV
⊤
k ,Σ⟩.

Although several utility measures exist for PCA, our choice is motivated by the error measure used in Oja’s Algorithm.
This is a natural measure of usefulness, as ⟨UU⊤,Σ⟩ quantifies how much of the original energy is retained when
projecting Σ onto the lower-dimensional subspace spanned by U and the Eckart-Young theorem tells us Vk is the best
rank-k approximation of Σ.
Theorem 2.1 (Main Theorem). For ε ∈ (0, 0.9) and 0 < k < d, k-DP-PCA satisfies (ε, δ)-DP for all inputs
{Ai}, B, ζ and δ. Given n i.i.d. samples {Ai ∈ Rd×d}ni=1 satisfying Assumptions A.1 to A.4 with parameters
(Σ,M, V,K, κ′, a, γ2), if

n = Cmax

{
eκ

′2
+

dκ′γ(log(1/δ))1/2

ε
+ κ′M + κ′2V +

d1/2(log(1/δ))3/2

ε
, λ2

1κ
′2k3V,

κ′2γk2d
√

log(1/δ)

ε

}
(1)

with a large enough constant (and ignoring log terms) and δ ≤ 1/n, then Algorithm 2 outputs U ∈ Rd×k, which with
probability at least 0.99 is ζ-useful, with

ζ = Õ

(
λ1

∆

(√
V k

n
+

γdk
√
log(1/δ)

εn

))
where Õ(·) hides poly-logarithmic factors in n, d, 1/ε, and log(1/δ) and polynomial factors in K.

We note that for k = 1, this recovers the same utility guarantee as DP-PCA [Liu et al., 2022] and continues to be
optimal for spiked covariance as shown below in Corollary 2.1.1. Additionally, we highlight that the dependence of
the estimation error on the dimension d is optimal, as demonstrated by the lower bound established in prior work by
Liu et al. However, the linear dependency on k might be an artifact of our analysis, specifically, if it were possible to

3

Algorithm 2 k-DP-PCA

Input: {A1, . . . , An}, k ∈ [d] , privacy parameters (ε, δ), B ∈ Z+, learning rates {ηt}⌊n/B⌋
t=1 , and τ ∈ (0, 1)

1: m← n/k, P0 ← Id

2: for i ∈ [k] do
3: ui ← MODIFIEDDP-PCA({Am∗(i−1)+j}mj=1, Pi−1, (ε, δ), B, {ηt}, τ)
4: Pi ← Pi−1 − uiu

⊤
i

5: end for
6: return U ← {ui}i∈[k]

demonstrate that the same samples Ai could be effectively reused across iterations, we could potentially reduce this
dependency on k. Furthermore, the first term of the utility guarantee O(

√
V k/n) represents the statistical error of

PCA without privacy constraint and the second term is the cost of privacy. Lastly, we require a lower bound on the
number of samples n in Equation (1), due to two key factors: first, each batch must be sufficiently large to guarantee
the accuracy of the range estimation in Algorithm 3 with high probability. And second, we need to carefully control
the cumulative error introduced during each deflation step, as errors from earlier steps directly propagate and amplify
subsequent errors.
Corollary 2.1.1 (Upper bound, Spiked Covariance). Under the assumptions of Theorem 2.1 and {Ai = xix

⊤
i }ni=1

with random vectors sampled as described in Example ??, k-DP-PCA outputs U ∈ Rd×k that is ζ-useful, with

ζ = Õ

(
σ(λ1 + σ2)

∆

(√
dk

n
+

dk
√
log(1/δ)

εn

))
where Õ(·) hides poly-logarithmic factors in n, d, 1/ε, and log(1/δ) and polynomial factors in K.

3 Algorithm and Proof Sketch
We present our main algorithm in Algorithm 2. The algorithm proceeds by applying the deflation method (Line 4)
to a 1-PCA algorithm (Line 3), defined in Algorithm 3. The privacy proof of Algorithm 2 follows straightforwardly
from the composition of private algorithms (Algorithms 5 and 6) used in Lines 3 and 4 of Algorithm 3. However, the
utility proof is more involved as the arguments for deflation in Jambulapati et al. [2024] do not directly extend to the
stochastic setting. So, we first extend the argument in Jambulapati et al. [2024] to the stochastic deflation setting by
defining a stochastic ePCA oracle in Definition 3. Full proofs are relegated to Appendix B.
Definition 3 (stochastic ePCA oracle). We say an algorithm OePCA is a ζ-approximate 1-ePCA oracle if, on indepen-
dent inputs A1, . . . , An ∈ Rd×d with E[Ai] = Σ for all i, an orthogonal projection matrix P ∈ Rd×d, a, the algorithm
OePCA returns u ∈ Rd satisfying u ∈ Im(P) and, with high probability

⟨uu⊤, PΣP ⟩ ≥ (1− ζ2)⟨vv⊤, PΣP ⟩

where v is the top eigenvector of PΣP .

However, we cannot use DP-PCA [Liu et al., 2022] as an input to the deflation method as it only satisfies

⟨uu⊤,E[P]ΣE[P]⟩ ≥ (1− ζ)⟨vv⊤,E[P]ΣE[P]⟩

which is insufficient, as E[P] is likely not even a projection matrix. For this reason, we propose MODIFIEDDP-
PCA (Algorithm 3), which we prove is a stochastic ePCA oracle in two steps. First we show that non-private Oja’s
algorithm is an ePCA oracle, via a novel analysis of the algorithm we relegated to Appendix C. And secondly, we
show that with high probability we can reduce the update step (Line 5 in Algorithm 3) to an update step of non-private
Oja’s algorithm with matrices PCtP , where Ct :=

1
B

∑
i∈[B] Ai + βtGt and Gt is a scaled Gaussian matrix. Lastly

we show in Theorem B.2 that the deflation method also yields the required utility guarantee with a stochastic e-PCA
oracle. For the full proof, see Appendix D.

References
Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq framework. In Proceed-

ings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
128–138, 2005. 1

4

Algorithm 3 ModifiedDP-PCA

Input: {A1, . . . , Am}, a projection P , privacy parameters (ε, δ), learning rates {ηt}⌊n/B⌋
t=1 , B ∈ Z+ and τ ∈ (0, 1)

1: Choose ω′
0 uniformly at random from the unit sphere, ω0 ← Pω′

0/∥Pω′
0∥

2: for t = 1, 2, . . . , T = ⌊m/B⌋ do
3: Λ̂← PrivTopEigenval({PAB(t−1)+iPωt−1}⌊B/2⌋

i=1 , (ε/2, δ/2), τ/(2T)) (Algorithm 5)
4: ĝt ← PrivMean({PAB(t−1)+iPωt−1}⌊B/2⌋

i=1 , Λ̂, (ε/2, δ/2), τ/(2T)) (Algorithm 6)
5: ω′

t ← ωt−1 + ηtP ĝt
6: ωt ← Pω′

t/∥Pω′
t∥

7: end for
8: return ωT

T Tony Cai, Dong Xia, and Mengyue Zha. Optimal differentially private pca and estimation for spiked covariance
matrices. arXiv preprint arXiv:2401.03820, 2024. 1

Kamalika Chaudhuri, Anand D Sarwate, and Kaushik Sinha. A near-optimal algorithm for differentially-private prin-
cipal components. The Journal of Machine Learning Research, 14(1):2905–2943, 2013. 1

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006. 1

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal bounds for privacy-
preserving principal component analysis. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 11–20, 2014. 1

Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector computation. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 331–340, 2013. 1

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2012. A.5
De Huang, Jonathan Niles-Weed, and Rachel Ward. Streaming k-pca: Efficient guarantees for oja’s algorithm, beyond

rank-one updates. In Conference on Learning Theory, pages 2463–2498. PMLR, 2021. 1
Prateek Jain, Chi Jin, Sham M Kakade, Praneeth Netrapalli, and Aaron Sidford. Streaming pca: Matching matrix

bernstein and near-optimal finite sample guarantees for oja’s algorithm. In Conference on learning theory, pages
1147–1164. PMLR, 2016. 1, C, C, C.3

Arun Jambulapati, Syamantak Kumar, Jerry Li, Shourya Pandey, Ankit Pensia, and Kevin Tian. Black-box k-to-1-pca
reductions: Theory and applications. arXiv preprint arXiv:2403.03905, 2024. 1, 3, B, 4, 5, B

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential privacy. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 1376–1385, Lille, France, 07–09 Jul 2015. PMLR. A.14

Xiyang Liu, Weihao Kong, Prateek Jain, and Sewoong Oh. Dp-pca: Statistically optimal and differentially private pca.
Advances in neural information processing systems, 35:29929–29943, 2022. (document), 1, 1, A, 2, 3, A.2, A.3, B,
D, D, D.4, 5, 6

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12:
389–434, 2012. 2

Appendix

A Mathematics Preliminaries

Lemma A.1. C ⪯ D =⇒ ACA⊤ ⪯ ADA⊤

Proof. C ⪯ D =⇒ C −D ⪯ 0. So for any x ∈ Rd, set y = A⊤x we have

x⊤A(C −D)Ax = y⊤(C −D)y ≤ 0

so for any x

x⊤ACA⊤x ≤ x⊤ADA⊤x

which proofs our claim.

5

Lemma A.2. (Lemma F.2 in [Liu et al., 2022] Let G ∈ Rd×d be a random matrix where each entry Gij is i.i.d.
sampled from standard Gaussian N (0, 1). Then there exists a universal constant C > 0 such that with probability
1− 2e−t2

∥G∥2 ≤ C(
√
d+ t)

for t > 0.
Lemma A.3. (Lemma F.5 in [Liu et al., 2022]) Under Assumption 1.-3. with probability 1− τ

∥ 1
B

∑
i∈[B]

Ai − Σ∥2 = O

(√
λ2
1V log(d/τ

B
+

λ1M log(d/τ

B

)

Lemma A.4. Let G ∈ Rd×d be a random matrix where each entry Gij is i.i.d. sampled from standard Gaussian
N (0, 1). Then we have

E[∥GG⊤∥2] ≤ C2d (2)

Proof. By Lemma A.2 the exists a universal constant C3 > 0 such that

P(∥G∥ ≥ C1(
√
d+ s)) ≤ e−s2 ,∀s > 0

then

E[∥GG⊤∥2] ≤ E[∥GG∥22]

=

∫ ∞

0

2rP(∥G∥2 > r)dr ≤ C1d+ C2

∫ ∞

√
d

2re−
(r−

√
d)2

2 d

= C1(d+
√
2πd+ 2) ≤ C2d

Lemma A.5 (Weyl’s inequality [Horn and Johnson, 2012]). Let G1 and G2 be two matrices with eigenvalues µ1 ≥
· · · ≥ µd and ν1 ≥ · · · ≥ νd respectively, then

|νi − µi| ≤ ∥G1 −G2∥2
Lemma A.6. (Conditional Markov Inequality) Let F be a conditioning event (or a sigma-algebra), let X be a non
negative random variable, and a > 0, then

P (X ≥ a|F) ≤ E[X|F]
a

Proof. As a first step we define

I{X≥a} =

{
1, if X ≥ a

0, otherwise

then by definition of the indicator function we have

XI{X≥a} ≥ aI{X≥a}

which implies

E[XI{X≥a}|F] ≥ E[aI{X≥a}|F]
by taking conditional expectation on both sides. And finally

E[I{X≥a}|F] = P (X ≥ a|F)
gives us the wished result

Lemma A.7. (Conditional Chebyshev’s Inequality) Let F be a conditioning event (or a sigma-algebra), then for
a > 0

P (|X − E[X|F]| ≥ a|F) ≤ V ar[X|F]
a2

where V ar[X|F] = E[(X − E[X|F])2|F].

6

Proof.

P (|X − E[X|F]| ≥ a|F) = P ((X − E[X|F])2 ≥ a2|F)

(X − E[X|F])2 is a non non negative random variable, so we can use conditional Markov, which gives us

P ((X − E[X|F])2 ≥ a2|F) ≤ E[(X − E[X|F])2|F]
a2

Lemma A.8. (Distributional Equivalence) Let z ∼ N (0,Σ), P a projection matrix, and ω ∈ Im(P) a unit vector,
then there exists a random matrix G so that

Pz
d
= PGPw

and

G = Σ1/2Y

with Y is a random matrix where each entry is i.i.d. sampled from N (0, 1).

Proof. First note that Cov(Pz) = PCov(z)P⊤, and as PP⊤ = P 2 = P we have

Pz ∼ N (0, PΣP)

Likewise we have

Cov(PGPw) = PCov(GPw)P = PCov(Gw)P

where the last equality follows as w ∈ Im(P). So we want

Cov(Gw) = Σ

If we define G = Σ1/2G′, we see that if we can find G′ so that

Gw
d∼ N (0, Id)

we are done. Using rotation invariance of the spherical Gaussian random vectors and the fact that ∥w∥2 = 1, we get
that defining G′ ∈ Rd×d with each entry i.i.d. sampled from N (0, 1), we get G′w ∼ N(0, Id), which finishes our
proof.

Lemma A.9. Assume we have a matrix A ∈ Rd×d and a projection matrix P then

∥PAP∥2 ≤ ∥A∥2

Proof. ∥PAP∥2 ≤ ∥P∥2∥A∥2∥P∥2 ≤ ∥A∥2, where the last inequality follows as projection matrices have eigenval-
ues in {0, 1}.

Lemma A.10. Let A ∈ Rd×d be a random matrix and P a random projection matrix independent of A then

∥E[PAPA⊤P]∥2 ≤ ∥E[AA⊤]∥2

Proof. Let x ∈ Rd be a unit vector, then

∥PAPx∥2 ≤ ∥APx∥2
as P is a projection matrix. Squaring both sides we get

x⊤PA⊤PAPx ≤ x⊤PA⊤APx

as x was an arbitrary unit vector, this implies:

PA⊤PAP ⪯ PA⊤AP

If we now take expectations on both sides we get

E[PA⊤PAP] ⪯ E[PA⊤AP] ⪯ E[PA⊤AP] = EP [PE[A⊤A|P]P] = E[PE[A⊤A]P] = E[PE[A⊤A]P]

where we can drop the conditioning as A is independent of P . So when taking the 2-norm on either side we get

∥E[PA⊤PAP]∥ ≤ ∥E[PE[A⊤A]P]∥2 ≤ E[∥P∥2∥E[A⊤A]∥2∥P∥2] ≤ ∥E[A⊤A]∥2
where the last inequality follows as ∥P∥2 ≤ 1.

7

Lemma A.11. For A and B independent random matrices

E[ABA⊤] ⪯ ∥E[B]∥2E[AA⊤]

Proof. By independence we have E[ABA⊤] = E[AE[B]A⊤]. Then by using E[B] ⪯ ∥E[B]∥2Id and Lemma A.1 we
obtain the wished inequality.

Lemma A.12. We define

HP
u :=

1

λ2
1(PΣP)

E[P (Ai − Σ)Puu⊤P (Ai − Σ)P]

and

γ2
P = max

∥u∥=1
∥HP

u ∥2

then

λ2
1(PΣP)γ2

P ≤ λ2
1γ

2

where γ and λ1 are defined as in Assumption A

Proof.

∥E
[
P (Ai − Σ)Puu⊤P (Ai − Σ)P

]
∥ = ∥EP

[
PE[(Ai − Σ)Puu⊤P (Ai − Σ)|P]P

]
∥

≤ EP

[
∥P∥∥E[(Ai − Σ)Puu⊤P (Ai − Σ)|P]∥∥P∥

]
≤ EP

[
∥E[(Ai − Σ)Puu⊤P (Ai − Σ)|P]∥

]
and further

max
∥u∥=1

∥E[(Ai − Σ)Puu⊤P (Ai − Σ)|P]∥ ≤ max
∥u∥=1

∥E[(Ai − Σ)uu⊤(Ai − Σ)|P]∥ = λ2
1γ

2

as Puu⊤P ⪯ uu⊤. So, all together this proves the Lemma.

Differential Privacy

Lemma A.13. (Parallel composition). Consider a sequence of interactive queries {qk}Kk=1 each operat-
ing on a subset Sk of the database and each satisfying (ε, δ)-DP. If Sk’s are disjoint then the composition
(q1(S1), q2(S2), ..., qK(SK)) is (ε, δ)-DP.

Lemma A.14. (Advanced Composition [Kairouz et al., 2015]) For ε ≤ 0.9, an end-to-end guarantee of (ε, δ)-
differential privacy is satisfied if a database is accessed k times, each with a (ε/(2

√
2k log(2/δ)), δ/(2k))-differential

private mechanism.

B Stochastic Black Box PCA

In this section we extend the work of Jambulapati et al. [2024] to the stochastic setting and obtain the same utility
results as them even when approximating the top eigenvector of the expectation of a stream of matrices.

Definition 4. (stochastic ePCA oracle) We say an algorithm OePCA is a ζ-approximate 1-ePCA oracle (or, ζ-1-ePCA
oracle) if, on independent inputs A1, . . . , An ∈ Rd×d with E[Ai] = Σ for all i, and P ∈ Rd×d, an orthogonal
projection matrix, the algorithm OePCA returns u ∈ Rd satisfying u ∈ Im(P) and, with high probability

⟨uu⊤, PΣP ⟩ ≥ (1− ζ2)⟨vv⊤, PΣP ⟩

where v is the top eigenvector of PΣP .

Remark. DP-PCA [Liu et al., 2022] is not a stochastic 1-ePCA oracle as it will only fulfill

⟨uu⊤,E[P]ΣE[P]⟩ ≥ (1− ζ2)⟨vv⊤,E[P]ΣE[P]⟩

and it’s not clear how close E[P]ΣE[P] is to PΣP .

8

Algorithm 4 BlackBoxPCA({Ai},k,O1PCA) [Jambulapati et al., 2024]

Input: {A1, . . . , An} i.i.d matrices sampled from a distribution with expectation E[Ai] = Σ ∈ Sd×d
⪰0 , k ∈ [d], O1PCA

an algorithm which takes as input matrices A1, . . . An and returns a unit vector in Rd

P0 ← Id

B ← ⌊n/k⌋
for i ∈ [k] do

ui ← O1PCA(AB∗(i−1)+1, . . . , AB∗i, Pi−1)

Pi ← Pi−1 − uiu
⊤
i

end for
return U ← {ui}i∈[k]

We will now show that for this type of approximation algorithm we can obtain a utility guarantee and that it would be
optimal for the spiked covariance setting. Jambulapti et al. define two types of approximation notions for PCA. Our
type of utility bound is equivalent to their first notion:

Definition 5. (energy k-PCA. [Jambulapati et al., 2024]) U ∈ Rd×k is an ζ-approximation energy k-PCA of M ∈
Sd×d
⪰0 if

⟨UU⊤⟩ ≥ (1− ζ2)∥M∥k
where

∥M∥k := max
orthonormalV ∈Rd×k

⟨V V ⊤,M⟩

and

⟨A,B⟩ = Tr(A⊤B)

is the frobenius inner product.

Lemma B.1. For v, w ∈ Rd unit vectors,θ the angle between the two and Σ a psd matrix with v it’s top eigenvector
we have

⟨ww⊤,Σ⟩ ≥ (1− sin2(θ))⟨vv⊤,Σ⟩

Remark. We note that sin2(θ) is a tight lower bound for ε, as w = v it is achieved.

Proof.

⟨ww⊤,Σ⟩ = ⟨vv⊤,Σ⟩ − ⟨vv⊤ − ww⊤,Σ⟩

= (1− ⟨vv
⊤ − ww⊤,Σ⟩
⟨vv⊤,Σ⟩

)⟨vv⊤,Σ⟩

Now as v is the top eigenvector of Σ we know

⟨vv⊤,Σ⟩ = Tr(vv⊤Σ) = v⊤Σv = λ1

where λ1 ≥ λ2 ≥ · · · ≥ λd denote the eigenvalues of Σ and v, v2, . . . , vd the corresponding eigenvectors. Therefore

⟨vv⊤ − ww⊤,Σ⟩
⟨vv⊤,Σ⟩

= 1− 1

λ1
w⊤Σw = 1− (w⊤vv⊤w +

1

λ1

d∑
i=2

λiw
⊤viv

⊤
i w)

= 1− < v,w >2 −
d∑

i=2

λi

λ1
< vi, w >2

As Σ is psd we know λi ≥ 0, which in turn gives us

⟨vv⊤ − ww⊤,Σ⟩
⟨vv⊤,Σ⟩

≤ 1− < v,w >2

9

and by definition

sin(θ) =
√
1− (⟨v, w⟩)2

so we have

⟨vv⊤ − ww⊤,Σ⟩
⟨vv⊤,Σ⟩

≤ sin2(θ)

which in turn means

⟨ww⊤,Σ⟩ ≥ (1− sin2(θ))⟨vv⊤,Σ⟩

Theorem B.2. k-to-1-ePCA reduction. Let ε ∈ (0, 1), let Σ ∈ Sd×d
⪰0 , let A1, . . . , An be i.i.d. (not sure independent

is needed) matrices with expectation Σ and let O1PCA be a stochastic ePCA oracle. Then, Algorithm 4 returns
U ∈ Rd×k so that Σ.

⟨UU⊤,Σ⟩ ≥ (1− ζ2)∥Σ∥k

Proof. We will proof this by induction, where the k = 1 case follows from Lemma B.1. For i + 1 we note Pi =
Id − UiU

⊤
i then

Tr(U⊤
i+1ΣUi+1) = Tr(U⊤

i ΣUi) + u⊤
i+1Σui+1

≥ (1− ζ2)∥Σ∥i + u⊤
i+1Σui+1

where the first step follows by linearity and the second step by induction assumption. Now we note

u⊤
i+1Σui+1 = ⟨ui+1u

⊤
i+1,Σ⟩ ≥ (1− ζ2)∥PiΣPi∥2

as ui+1 can be seen as the approximation the oracle returns for the top eigenvalue of PiΣPi and therefore it must fulfill
this equality by assumption on our oracle. By Lemma 3 in [Jambulapati et al., 2024] we know

∥PiΣPi∥2 ≥ λi+1(Σ)

and this in turn gives us

Tr(U⊤
i+1ΣUi+1) ≥ (1− ζ2)∥Σ∥i+1

which proofs our Claim.

So if we can show ModifiedDP-PCA classifies as a stochastic k = 1 ePCA oracle, we will automatically get a utility
guarantee for k > 1.

C Novel Analysis of non private Oja’s Algorithm

Given A1, . . . , An i.i.d with E[Ai] = Σ, let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of Σ and v1, . . . , vn the
corresponding eigenvectors. Further let P be a projection matrix independent of the Ai. Our goal is to compute an
ε approximation of the top eigenvector of PΣP . For P a deterministic matrix the analysis of Jain et al. [2016] of
Oja’s Algorithm shows that the output of the algorithm will be close to the top eigenvector of PΣP . The problem we
face is that in our case P = I −

∑
i uiu

⊤
i where the ui are random and obtained as an estimation using a previously

sampled set of Ai’s. So applying Jain et al.’s main theorem would only guarantee us that the output is close to the top
eigenvector of E[P]ΣE[P], but E[P] might not even be a projection matrix. Therefore, we give an alternative proof of
Oja’s Algorithm, showing that with inputs of the form {PAiP} we do get utility guarantees for being close to the top
eigenvector of PΣP even when P is random.

From now on we will let λ̃1 ≥ · · · ≥ λ̃d refer to the eigenvalues of PΣP and we note that

λi ≥ λ̃i

as a natural consequence of applying a projection. We further assume that there are scalarsM,V such that

1. ∥Ai − Σ∥2 ≤M with probability 1

2. max{∥E[(Ai − Σ)(Ai − Σ)⊤]∥2, ∥E[(Ai − Σ)⊤(Ai − Σ)]∥2} ≤ V

10

Remark we on purpose use different symbols here than in Assumption A, asM = λ1M and similarly for V , when
compared to Assumption A. We then define

Bn := (I+ ηnPAnP)(I+ ηn−1PAn−1P) · · · · · (I+ η1PA1P)

wn :=
Bnw0

∥Bnw0∥2
V̄ := V + λ̃2

1

and note that wn is the result of Oja’s Algortihm after n steps given {PAiP} as input. The proof of accuracy of
Algorithm 3 will require the following result we will proof below
Theorem C.1. Given A1, . . . , An fulfill Assumption 1. - 3. with parameters Σ,M, V, κ and a projection matrix
P independent of the Ai, ṽ the top eigenvector of PΣP and Bn, ωn the outputs resulting from non-private Oja’s
Algorithm given input PA1P, . . . , PAnP

sin

(
ṽ,

Bnωn

∥Bnωn∥2

)
≤ 1

Q
exp

∑
j∈[t]

η2j 5V̄

d exp(−2(λ̃1 − λ̃2)
∑
j∈[t]

ηj

 (3)

Theorem C.2. (Main theorem of this section) Fix any δ > 0 and suppose the step sizes are set to ηt =
α

(λ̃1−λ̃2)(β+t)

for α > 1
2 and

β := 20max

(
Mα

(λ̃1 − λ̃2)
,

V̄α2

(λ̃1 − λ̃2)2 log(1 +
δ

100)

)
Suppose the number of iterations n > β. Then the output ωn of Algorithm 1 satisfies:

1− (ω⊤
n ṽ)

2 ≤ C log(1/δ)

δ2

(
d

(
β

n

)2α

+
α2V

(2α− 1) · (λ̃1 − λ̃2)2
· 1
n

)
, (4)

with probability at least 1− δ. Here C is an absolute numerical constant.

Proof. Analogously to the proof of Theorem 4.1 in [Jain et al., 2016] by replacing their Theorem 3.1 with our Theorem
C.1.

We state and proof several Lemmas that will allow us to proof Theorem C.1 which in turn will directly proof Theorem
C.2.
Lemma C.3 (One Step Power Method [Jain et al., 2016]). . Let B ∈ d× d, let v ∈ d be a unit vector, and let V⊥ be a
matrix whose columns form an orthonormal basis of the subspace orthogonal to v. If w ∈ Rd is chosen uniformly at
random from the surface of the unit sphere then with probability at least 1− δ

sin2(v,
Bw

∥Bw∥2
) = 1− (v⊤Bw)2 ≤ C

log(1/δ)

δ

Tr(V ⊤
⊥ BB⊤V⊥)

v⊤BB⊤v
(5)

where C is an absolute constant.

Based on the above Lemma we see that to show that Oja’s algorithm succeeds we simply need to show that with
high probability Tr(Ṽ ⊤

⊥ BnB
⊤
n Ṽ⊥) is relatively large and ṽ⊤BnB

⊤
n ṽ is relatively small. Note so long as we pick ηi

sufficiently small, i.e. ηi = O(1/maxM, λ̃1) then I + ηiPAiP is invertible, so in turn BnB
⊤
n , which guarantees

ṽ⊤BnB
⊤
n ṽ > 0, so the RHS of the inequality will always be finite. In order to explicitly bound the RHS we will

utilize conditional Chebychev’s and Markov’s, where the conditioning will serve to fix P .

Lemma C.4. ∥E[BtB
⊤
t |P]∥2 ≤ exp(

∑
i∈[t] 2ηiλ̃1 + η2i (λ̃

2
1 + V))

Proof. We will denote αt = ∥E[BtB
⊤
t |P]∥2 in this proof. Note that E[BtB

⊤
t |P] ⪯ αtI, so by Lemma A.11

E[BtB
⊤
t |P] = E[(I+ ηtPAtP)Bt−1B

⊤
t−1(I+ ηtPAtP)⊤|P]

⪯ αt−1E[(I+ ηtPAtP)(I+ ηtPAtP)⊤|P]

= αt−1E[I+ ηtPAtP ++ηtPA⊤
t P + η2tPAtPA⊤

t P |P]

= αt−1(I+ 2ηtPΣP + η2tE[PAtPA⊤
t P |P]

11

we can easily bound PΣP via PΣP ⪯ λ̃1I. Further
E[PAtPA⊤

t P |P] = PΣPΣP + E[(P (At − Σ)P (At − Σ)⊤P |P]

= PΣPΣP + PE[(At − Σ)P (At − Σ)⊤|P]P

⪯ λ̃2
1I+ E[(At − Σ)(At − Σ)⊤|P]

= λ̃2
1I+ E[(At − Σ)(At − Σ)⊤]

⪯ (λ̃2
1 + V)I

where the third step follows as ∥P∥2 ≤ 1, the 4th as P is independent of At and the last step by assumption on the Ai.
So in total this gives us

αt ≤ αt−1(1 + 2ηtλ̃1 + η2t (λ̃
2
1 + V))

As α0 and 1 + x ≤ ex this gives us

αt ≤ exp(
∑
i∈[t]

2ηiλ̃1 + η2i (λ̃
2
1 + V))

Lemma C.5. E[ṽ⊤BtBtṽ|P] ≥ exp(
∑

i∈[t](2ηiλ̃1 − 4η2i λ̃
2
1))

Proof. We define βt := E[ṽ⊤BtB
⊤
t ṽ|P], since Bt = (I+ ηtPAtP)Bt−1 we have

βt = ⟨E[Bt−1B
⊤
t−1|P],E[(I+ ηtPAtP)ṽṽ⊤(I+ ηtPAtP)⊤|P]⟩

because ⟨A,B⟩ := Tr(A⊤B) and the trace is invariant under cyclic permutations. The RHS of the matrix inner
product we can lower bound as follows:

E[(I+ ηtPAtP)ṽṽ⊤(I+ ηtPAtP)⊤|P] = ṽṽ⊤ + ηtPΣP ṽṽ⊤ + ηtṽṽ
⊤PΣP + η2tE[PAtP ṽṽ⊤PA⊤

t P |P]

≥ ṽṽ⊤ + ηtPΣP ṽṽ⊤ + ηtṽṽ
⊤PΣP

= ṽṽ⊤ + 2ηtλ̃1ṽṽ
⊤

where the last step follows as ṽ is the top eigenvector of PΣP by assumption. So all together we get

βt ≥ ⟨E[Bt−1B
⊤
t−1|P], (1 + 2λ̃1ηt)ṽṽ

⊤⟩ = (1 + 2λ̃1ηt)βt−1

as B0 = I, we have β0 = ∥ṽ∥22 = 1 and then by applying 1 + x ≥ exp(x− x2) for all x > 0 we get

βt ≥ exp(

t∑
i=1

2λ̃1ηi −
t∑

i=1

4λ̃2
1η

2
i)

Lemma C.6. E[(ṽ⊤BtBtṽ)
2|P] ≤ exp(

∑
4ηiλ̃1 + 10η2i ν̄)

Proof. We define γs := E[(ṽ⊤Wt,sW
⊤
t,sṽ)

2|P] where Wt,s := (I − ηtPAiP) · . . . (I + ηt−s+1PAt−s+1P). So by
this definition we see Wt,t = Bt and γt = E[(ṽ⊤BtB

⊤
t ṽ)2|P]. As the trace of a scalar is the scalar itself, we can

exploit the cyclic permutation properties of the trace:
γt = Tr(E[W⊤

t,tṽṽ
⊤Wt,tW

⊤
t,tṽṽ

⊤Wt,t|P])

= Tr(E[(I+ η1A
⊤
1)Gt−1(I+ η1A1)(I+ η1A

⊤
1)Gt−1(I+ η1A1)|P])

where Gt−1 := W⊤
t,t−1v1v

⊤
1 Wt,t−1. We first bound for an arbitrary Gt−1 = G, and then take the expectation over

only A1 and finally over Gt−1.
Tr(E[(I+ η1PA⊤

1 P)G(I+ η1PA1P)(I+ η1PA⊤
1 P)G(I+ η1PA1P)|P])

=Tr(E[(G+ η1PA⊤
1 PG+ η1GPA1P + η21PA⊤

1 PGPA1P)2|P])

=Tr(G2) + 4η1Tr(PΣPG2) + 2η21Tr(E[PA1PA⊤
1 P |P]G2)

+ η21Tr(E[PA⊤
1 PGPA1PG|P]) + η21Tr(E[PA⊤

1 PGPA⊤
1 PG|P])

+ η21Tr(E[GPA1PGPA1P |P]) + η21Tr(E[GPA⊤
1 PGPA1P |P])

+ 2η31Tr(E[PA⊤
1 PGPA⊤

1 PGPA1P |P])

+ η41Tr(E[PA⊤
1 PGPA1PA⊤

1 PGPA1P |P]))

12

Let’s begin with the first order terms:

Tr(PΣPG2) ≤ ∥PΣP∥2Tr(G2) = λ̃1Tr(G
2)

Tr(E[PA1PA⊤
1 P |P]G2) ≤ (∥E[P (A1 − Σ)P (A⊤

1 − Σ)P]∥2 + ∥PΣPΣP∥2)Tr(G2) ≤ (V + λ̃2
1)Tr(G

2)

where the last inequality follows by Lemma A.10. Next we have 4 second order terms:

Tr(E[PA⊤
1 PGPA1PG|P]) = Tr(E[PA⊤

1 PGPA⊤
1 PG|P])

=Tr(E[GPA1PGPA1P |P]) = Tr(E[GPA⊤
1 PGPA1P |P])

≤1

2
E[∥PA⊤

1 PG∥2F + ∥PA1PG∥2F |P]

=
1

2
Tr(GE[PA1PA⊤

1 P |P]G+GE[PA1PA⊤
1 P |P]G)) ≤ (V + λ̃2

1)Tr(G
2)

Third order terms we can bound as follows:

Tr(E[PA⊤
1 PGPA⊤

1 PGPA1P |P]) ≤ ∥PA⊤
1 P∥Tr(E[PA⊤

1 PGGPA1P)|P]

≤ (∥P (A1 − Σ)P∥2 + ∥PΣP∥2)Tr(GE[PA1PA⊤
1 P |P]G)

≤ (M+ λ̃1)(V + λ̃1)Tr(G
2)

Finally the fourth order terms

Tr(E[PA⊤
1 PGPA1PA⊤

1 PGPA1P |P])) ≤ ∥E[PA1PA⊤
1 P]∥2Tr(GE[PA1PA⊤

1 P |P]G)

≤ (M+ λ̃1)
2(V + λ̃1)Tr(G

2)

all of this together gives us

Tr(E[(I+ η1PA⊤
1 P)G(I+ η1PA1P)(I+ η1PA⊤

1 P)G(I+ η1PA1P)|P])

≤Tr(G2) + 4η1λ̃1Tr(G
2) + 5η21V̄Tr(G2) + 4η31(M+ λ̃1)V̄Tr(G2) + η41(M+ λ̃1)

2V̄Tr(G2)

=(1 + 4η1λ̃1 + 5η21V̄ + 4η31(M+ λ̃1)V̄ + η41(M+ λ̃1)
2V̄)Tr(G2)

≤(1 + 4η1λ̃1 + 10η21V̄)Tr(G2)

≤ exp(4η1λ̃1 + 10η21V̄)Tr(G2)

where we used ηi ≤ 1
4max{λ1,M} and 1 + x ≤ exp(x). All of this give us

γt ≤ exp(4η1λ̃1 + 10η21V̄)E[Tr(G2
t−1)|P] = exp(4η1λ̃1 + 10η21V̄)γt−1

then using γ0 = 1 gives us the wished result.

Lemma C.7. E[Tr(Ṽ ⊤
⊥ BtB

⊤
t Ṽ⊥)|P] ≤ exp(

∑t
j=1 2ηj λ̃2 + η2j V̄)(d+

∑
i∈[t] η

2
i V exp(

∑
j∈[i] 2ηj(λ̃1 − λ̃2))

Proof. Let αt := E[Tr(Ṽ ⊤
⊥ BtB

⊤
t Ṽ⊥)|P]. Then using the cyclic property of the trace and the fact that Ṽ⊥ is not

random in E[·|P], we have

αt = ⟨E[BtB
⊤
t |P], Ṽ⊥Ṽ

⊤
⊥ ⟩

= ⟨E[Bt−1B
⊤
t−1|P],E[(I+ ηtPAtP)Ṽ⊥Ṽ

⊤
⊥ (I+ ηtPAtP)|P]⟩

the RHS of this matrix inner product equates to

Ṽ⊥Ṽ
⊤
⊥ + ηtPΣPṼ⊥Ṽ

⊤
⊥ + ηtṼ⊥Ṽ

⊤
⊥ PΣP + η2tE[PAtPṼ⊥Ṽ

⊤
⊥ PAtP |P]

⪯Ṽ⊥Ṽ
⊤
⊥ + 2ηtλ̃2Ṽ⊥Ṽ

⊤
⊥ + η2t λ̃

2
1)Ṽ⊥Ṽ

⊤
⊥ + E[P (At − Σ)P (At − Σ)P |P]

⪯(1 + 2ηtλ̃2 + η2t V̄)Ṽ⊥Ṽ
⊤
⊥ + η2tVv1v⊤1

where we used that Ṽ⊥ is orthogonal to the top eigenvector of PΣP and that Ṽ⊥Ṽ
⊤
⊥ ⪯ I as it is an orthogonal matrix.

So plugging this into the inner product we get

αt ≤ (1 + 2ηtλ̃2 + η2t V̄)⟨E[Bt−1B
⊤
t−1|P], Ṽ⊥Ṽ

⊤
⊥ ⟩+ eta2tV⟨E[Bt−1B

⊤
t−1|P], v1v

⊤
1 ⟩

13

using 1 + x ≤ exp(x) we get

αt ≤ exp(2ηtλ̃2 + η2t V̄)αt−1 + η2tV∥E[Bt−1B
⊤
t−1|P]∥2

≤ exp(2ηtλ̃2 + η2t V̄)αt−1 + η2tV exp(
∑

i∈[t−1]

2ηiλ̃1 + η2i V̄)

using Lemma C.4. Then by recursion we get

αt ≤ exp(

t∑
j=1

2ηj λ̃2 + η2j V̄)α0 +
∑
i∈[t]

η2i V exp(
∑
j∈[i]

2ηj λ̃1 + η2j V̄) exp(
t∑

j=i+1

2ηj λ̃2 + η2j V̄)

the result follows by α0 = d− 1 ≤ d

Proof of Theorem C.1 Using conditional Chebychev’s (Lemma A.7) we have

P
[
|ṽ⊤BnB

⊤
n ṽ − E[ṽ⊤BnB

⊤
n ṽ|P]| > 1√

δ

√
Var[ṽBnB⊤

n ṽ|P]

]
< δ

so with probability 1 − δ given P is fixed ṽ⊤BnB
⊤
n ṽ lies in the interval around it’s expectation. So we know with

probability at least 1− δ

ṽ⊤BnB
⊤
n ṽ > E[ṽ⊤BnB

⊤
n ṽ|P]− 1√

δ

√
Var[ṽBnB⊤

n ṽ|P]

= E[ṽ⊤BnB
⊤
n ṽ|P]− 1√

δ

√
E[(ṽBnB⊤

n ṽ)2|P]− E[ṽBnB⊤
n ṽ|P]2

= E[ṽ⊤BnB
⊤
n ṽ|P](1− 1√

δ

√
∆− 1

with

∆ =
E[(ṽBnB

⊤
n ṽ)2|P]

E[ṽBnB⊤
n ṽ|P]2

≤ E[(ṽBnB
⊤
n ṽ)2|P]

exp(
∑

i∈[t] 2ηiλ̃1 − 4η2i λ̃
2
1)

2

≤
exp(

∑
i∈[t] 4ηiλ̃1 + 10η2i V̄)

exp(
∑

i∈[t] 2ηiλ̃1 − 4η2i λ̃
2
1)

2

=
exp(

∑
i∈[t] 4ηiλ̃1 + 10η2i V̄)

exp(
∑

i∈[t] 4ηiλ̃1 − 8η2i λ̃
2
1)
≤ exp(

∑
i∈[t]

18η2i V̄)

where we use Lemma C.5 and Lemma C.6. So putting this together we get

ṽ⊤BnB
⊤
n ṽ ≥ exp

∑
i∈[n]

(2ηiλ̃1 − 4η2i λ̃
2
1)

1− 1√
δ

√
exp(

∑
i∈[n]

18η2i V̄)− 1

 (6)

this lower bounds the denominator in Lemma C.3. So next we will upper bound the nominator to complete the proof.

Markov’s inequality gives us

Tr(Ṽ ⊤
⊥ BtB

⊤
t Ṽ⊥) ≤ E[Tr(Ṽ ⊤

⊥ BtB
⊤
t Ṽ⊥)] ·

1

δ
holds with probability 1− δ. So by Lemma C.7 we get

Tr(Ṽ ⊤
⊥ BtB

⊤
t Ṽ⊥) ≤

1

δ
exp

∑
j∈[t]

2ηj λ̃2 + η2j V̄

d+ V
t∑

i=1

η2i exp

∑
j∈[i]

2ηj(λ̃1 − λ̃2)

 (7)

so plugging Equation 6 and 7 into Lemma C.3 we get that with probability at least 1− 2δ

sin2(ṽ,
Bnwn

∥Bnwn∥2
)

≤C log(1/δ)

δ

1

(1− 1√
δ

√
exp(

∑
i∈[n] 18η

2
i V̄)− 1

exp(
∑
j∈[t]

2ηj(λ̃2 − λ̃1) + η2j (V̄ + 4λ2
1))(d+ V

t∑
i=1

η2i exp(
∑
j∈[i]

2ηj(λ̃1 − λ̃2)))

By V̄ + 4λ̃2
1 ≤ 5V̄ and the definition of Q the result follows.

14

D Proof of Main Theorem

The privacy proof of Algorithm 2 follows straight from the privacy of ModifiedDP-PCA, which in turn follows by
[Liu et al., 2022], however the utility proof is more involved. We cannot apply DP-PCA straight away as this would
only give us a guarantee that the vector ṽ we obtain is a good approximation of the top eigenvector of E[P]ΣE[P].
This is not sufficient for the deflation method, as we require ṽ to be a good approximation of PΣP . We show that for
ModifiedDP-PCA this is indeed the case. By first showing that with high likelyhood we can reduce the update step
to an update step of non private Oja’s Algorithm with matrices PCtP . We then use a novel result we proved (which
for readability we added to the appendix), which shows that non private Oja’s Algorithm given input {PCtP}t will
return a good approximation of PE[Ct]P under some assumptions on Ct which we will show, our data fulfills.
Theorem D.1. (Utility of ModifiedDP-PCA) For ε ∈ (0, 0.9) and 0 < k < d, ModifiedDP-PCA fulfills (ε, δ)-DP for
all inputs {Ai}, B, ζ and δ and any projection matrix P (that we assume to already be private). Given n i.i.d. samples
{Ai ∈ Rd×d}ni=1 satisfying Assumption 1. - 4. with parameters (Σ,M, V,K, κ, a, γ2), if

n = Õ

(
eκ

′2
+

dκ′γ(log(1/δ))1/2

ε
+ κ′M + κ′2V +

d1/2(log(1/δ))3/2

ε

)
where κ′ = λ1(Σ)

λ1(PΣP)−λ2(PΣP) with a large enough constant and δ ≤ 1/n. If further

0 < λ1(PΣP)− λ2(PΣP)

then there exists a learning rate ηt that depends on (t,M, V,K, a, λ1(Σ), λ1(PΣP) − λ2(PΣP), n, dε, δ) such that
T = ⌊n/B⌋ steps of ModifiedDP-PCA with choices of τ = 0.01 and B = c1n/(log n)

3 outputs ωT such that with
probability 0.99

sin(ωt, ṽ) ≤ Õ

(
κ′

(√
V

n
+

γd
√

log(1/δ)

εn

))

where ṽ is the top eigenvector of PΣP and Õ(·) hides poly-logarithmic factors in n, d, 1/ε, and log(1/δ) and poly-
nomial factors in K.

Remark. For readability we omitted the advanced composition details in the above proof. If we choose T = O(log2n),

we can simply choose (ε′, δ′) = (ε/(2
√
2 log2(n)log(2/δ))), δ/(2 log2(n))) in every step and then by advanced

composition we get. And in our utility guarantee we would only occur additional log2(n) factors which we omit.

Proof. We choose the batch size B = Θ(n/ log3 n) such that we access the dataset only T = Θ(log3 n) times. Hence
we do not need to rely on amplification by shuffling. To add Gaussian noise that scales as the standard deviation
of the gradients in each minibatch (as opposed to potentially excessively large mean of the gradients), DP-PCA first
gets a private and accurate estimate of the range. Using this estimate, Λ, Private Mean Estimation returns an unbiased
estimate of the empirical mean of the gradients, as long as no truncation has been applied. As we choose the truncation
threshold so that with high probability there will be no truncation the update step will look as follows:

ω′
t ← ωt−1 + ηtP (

1

B

∑
i∈[B]

PAiPωt−1 + βtzt)

where zt ∼ N (0, I) and βt =
8K
√

2Λ̂t log
a(Bd/τ)

√
2d log(2.5/δ)

εB . The privacy follows by the privacy of the subroutines
private eigenvalue and private mean estimation [Liu et al., 2022]. So all that is left to do is show the utility guarantee.
We will do that by showing we can reduce it the accuracy of the non private case. First we note that P 2 = P so we get

ω′
t = ωt−1 + ηt(

1

B

∑
iin[B]

PAiPωt−1 + βtPzt)

Using rotation invariance of the spherical Gaussian random vectors and the fact that ∥ωt−1∥ = 1 and ωt−1 ∈ Im(P)
(for details see Lemma A.8), we can reformulate it as

ω′
t ← ωt−1 + ηt

 1

B

∑
i∈[B]

PAiP + βtPGtP

ωt−1

15

we can further pull out the projection matrices to obtain

ω′
t ← ωt−1 + ηtP

 1

B

∑
i∈[B]

Ai + βtGt

Pωt−1

Where G is a matrix whose entries are i.i.d. N (0, 1) distributed. So we have a matrix

Ct :=
1

B

∑
i∈[B]

Ai + βtGt

and we will now proof that Ct fulfills all requirements for Theorem C.2 (our version of the non private Oja’s Algorithm
utility guarantee), which will directly give us the wished utility guarantee. It is easy to see that E[Ct] = Σ as z is a zero
mean random variable and hence so is Gt. Next we show the upper bound of max{∥E[(Ct−Σ)(Ct−Σ)⊤]∥2, ∥E[(Ct−
Σ)⊤(Ct − Σ)]∥2}

∥E[(Ct − Σ)(Ct − Σ)⊤]∥2

=∥E[(1
B

∑
i∈[B]

Ai + βtGt − Σ)(
1

B

∑
i∈[B]

Ai + βtGt − Σ)⊤]∥2

≤∥E[(1
B

∑
i∈[B]

Ai − Σ)(
1

B

∑
i∈[B]

Ai − Σ)⊤]∥2 + β2
t ∥E[GtG

⊤
t]∥2

≤V λ2
1/B + β2

t ∥E[GtG
⊤
t]∥2

≤V λ2
1/B + β2C2d =: Ṽ

where the first inequality holds due to Gt being independent to Ai, and E[Gt] = 0. The second inequality follows due
to having B elements of 1

B2 ∥E[(Ai − Σ)⊤(Ai − Σ)]∥2 and Assumption 3. And the last inequality holds with high
probability due to Gt having i.i.d. Gaussian entries, and by choosing

β :=
16Kγλ1 log

a(Bd/τ)
√

2d log(2.5/δ)

εB

we have β ≥ βt for all t as by Theorem 6.1 in [Liu et al., 2022] and Assumption 4

Λ̂ ≤
√
2λ2

1∥Hu∥2 ≤
√
2λ2

1γ

Lastly let us consider ∥Ct − Σ∥2. By Lemma A.2 and Lemma A.3 we know with proabability 1− τ for all t ∈ [T]

∥Ct − Σ∥2

=∥ 1
B

∑
i∈[B]

Ai + βtGt − Σ∥

≤

(
Mλ1 log(dT/τ

B
+

√
V λ2

1 log(dT/τ

B
+ β(

√
d+

√
log(T/τ)

)
=: M̃

so by Theorem C.2 for

T ≥ 20max

(
M̃α

(λ̃1 − λ̃2)
,

(Ṽ + λ2
1)α

2

(λ̃1 − λ̃2)2 log(1 +
ζ

100)

)
:= ξ (8)

with probability 1− ζ

sin2(wT , ṽ) ≤
C log(1/δ)

δ2

(
d

(
ξ

T

)2α

+
α2Ṽ

(2α− 1)(λ̃1 − λ̃2)2T

)
so if we fill in M̃ , Ṽ , and β into ξ and use n = BT we get

ξ

T
:= 20max


λ1M log(dT/τα

(λ̃1−λ̃2)n
+
√

V log(dT/τ
nT · λ1α

(λ̃1−λ̃2)
+

Kγλ1 loga(nd/Tτ
√

2 log(2.5/δ)
√

log(T/τdα

εn(λ̃1−λ̃2)
,

V λ2
1α

2

n(λ̃1−λ̃2)2 log(1+ ζ
100)

+
K2γ2λ2

1 log2a(Bd/τd2 log(2.5/δ)α2

ε2n2(λ̃1−λ̃2)2 log(1+ ζ
100)

+
λ2
1α

2

(λ̃1−λ̃2)2 log(1+ ζ
100)T

16

in order for Theorem C.2 to hold we need to force ξ/T ≤ 1. Noting τ = O(1), K = O(1) and selecting α = c log n,
T = c′(log n)3 we get that

ξ

T
≤ 20Cmax


λ1M log(d log(n)) logn

(λ̃1−λ̃2)n
+
√

V log(d log(n))
n · λ1

(λ̃1−λ̃2)
+

γλ1 log2(nd/ log(n))
√

log(1/δ) log(log(n)) log(n)d

ε(λ̃1−λ̃2)
V λ2

1(logn)2

n(λ̃1−λ̃2)
+

γ2λ2
1 log2a(nd/ log(n)) log(1/δ)d2α2

ε2n2(λ̃1−λ̃2)2
+

λ2
1(logn)2

(λ̃1−λ̃2)2T

so ξ
T ≤ 1 will be trivially fulfilled if each of the summand is smaller than 1/3. For the last term we need

λ2
1(log n)

2

(λ̃1 − λ̃2)2T
≤ 1/3

as T = c′(log(n))3 this means

log n ≥ 3
λ1

(λ̃1 − λ̃2)2

for the remaining terms we need

n

loga(n/ log n) log(n)
≥ 3

γλ1

√
log(1/δ)d

ε(λ̃1 − λ̃2)

n

(log(n))2
≥ 3

V λ2
1

(λ̃1 − λ̃2)2

n

log(log(n))
≥
√
3
√

V log(d)

n

log(n) log(log(n))
≥ 3

λ1M log(d)

(λ̃1 − λ̃2)

We note that to obtain n/log(n) ≥ a, n ≃ a log(a) + a log log(a). So

n ≳ C ′

(
exp(λ2

1/(λ̃1 − λ̃2)
2) +

Mλ1

(λ̃1 − λ̃2)
+

V λ2
1

(λ̃1 − λ̃2)2
+

dγλ1

√
log(1/δ)

(λ̃1 − λ̃2)ε

)
with large enough constant suffices (where ≳ is hiding log terms) to obtain ξ/T ≤ 1 and d(ξ/T)2α ≤ 1/n2. And we
get

Ṽ

(λ̃1 − λ̃2)
≲ C ′′

(
V λ2

1

n
+

γ2λ2
1d

2 log(1/δ)

εn

)
(where ≲ is hiding log terms), so plugging this in our bound for sin(ωT , ṽ) we get

sin(ωT , ṽ) ≤ Õ

(
κ′

(√
V

n
+

γd
√

log(1/δ)

εn

))
which finishes the proof

The above utility result depends on the eigenvalues of the input. After the first step of k-DP-PCA our input is of
the form PA1P, . . . , PAnP , so our utility bound depends on the eigengap of PΣP . Now in general λ1(PΣP) −
λ2(PΣP) can be arbitrarily much smaller than the actual eigengap of Σ, and therefore it is not a sufficient utility
bound as is. However, as we iteratively apply projection matrices of the form

P = I − uu⊤

where u is a unit vector, and further u is ε-close to the top eigenvector of the matrix we apply it to, we can actually
relate the eigengap of PΣP to the one of Σ using Weyl’s Theorem.
Lemma D.2. Given sin2(θ) ≤ ξ, where θ refers to the angle between v1 and u we have

λ̃i ≥ λi−1 −∆

λ̃i ≤ λi−1 +∆

where ∆ = 8λ1

√
ξ(1 +

√
ξ)

17

Proof. We will use Weyl’s Theorem to proof this, by defining

G1 = (I− v1v
⊤
1)Σ(I− v1v

⊤
1)

G2 = (I− uu⊤)Σ(I− uu⊤)

then by our previous definitions we know λ2 = µ1, λ3 = µ2, . . . and λ̃1 = ν1, λ̃2 = ν2, Now we can use this as
follows:

λ̃i = λi−1 + (λ̃i − λi−1)

≤ λi−1 + |λ̃i − λi−1|
≤ λi−1 + ∥G1 −G2∥

where the last inequality follows by Weyl’s Theorem. Next we will bound ∥G1 −G2∥

∥G1 −G2∥ = ∥(v1v⊤1 Σ− uu⊤Σ) + (Σv1v
⊤
1 − Σuu⊤) + (uu⊤Σuu⊤ − v1v

⊤
1 Σv1v

⊤
1)∥

= 4∥v1v⊤1 − uu⊤∥2∥Σ∥2
where the last step follows as (uu⊤Σuu⊤−v1v⊤1 Σv1v⊤1 = (uu⊤−v1v⊤1)Σuu⊤+v1v

⊤
1 Σ(uu

⊤−v1v⊤1 and ∥v1v⊤1 ∥2 =
∥uu⊤∥2 = 1. Further it turns out that we can bound ∥v1v⊤1 − uu⊤∥2 using sin2(v1, u) ≤ ξ: First we note that as u
and v1 are unit vectors we can write

u = cos θv1 + sin θv⊥1

so this means

uu⊤ = cos2 θv1v
⊤
1 + cos θ(v1v

⊥⊤
1 + v⊥1 v

⊤
1) + sin2 θv⊥1 v

⊥⊤
1

and also gives us

∥uu⊤ − v1v
⊤
1 ∥2 = ∥(cos2 θ − 1)v1v

⊤
1 + cos θ sin θ(v1v

⊥⊤
1 + v⊥1 v

⊤
1) + sin2 θv⊥1 v

⊥⊤
1 ∥2

= ∥ − sin2 θv1v
⊤
1 + cos θ(v1v

⊥⊤
1 + v⊥1 v

⊤
1) + sin2 θv⊥1 v

⊥⊤
1 ∥2

≤ | sin2 θ|∥v1v⊤1 ∥+ | cos θ sin θ|∥v1v⊥⊤
1 + v⊥1 v

⊤
1 ∥2 + | sin2 θ|∥v⊥1 v⊥⊤

1 ∥2
≤ 2| sin2 θ|+ 2| sin θ| ≤ 2

√
ξ(1 +

√
ξ)

so all in all this tells us
Lemma D.3. For Σ ∈ Rd×d a matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd, P = I − uu⊤, with u ∈ Im(Σ), and
λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃d−1 the eigenvalues of PΣP

λ̃1 − λ̃2 ≥ λ2 − λ3 − 2∆

where ∆ = 8λ1

√
ξ(1 +

√
ξ) and ξ ≥ sin2(θ) with θ the angle between u and v1, the top eigenvector of Σ.

Together with Theorem D.4 this give us a utility guarantee independent of eigenvalues of PΣP for k ≤ 2. As in the
first step of our recursive algorithm P = I and in the second we will pass P = I − u1u

⊤
1 .

Theorem D.4. Utility for k = 1 (Main Theorem in [Liu et al., 2022]). For ε ∈ (0, 0.9), Algorithm 3 guarantees
(ε, δ)-DP for all S,B, ζ, and δ. Given n i.i.d. samples {Ai ∈ Rd×d}ni=1 and P = I satisfying Assumption 1 with
parameters (Σ,M, V,K, κ, a, γ2), if

n = Õ

(
eκ

2

+
d1/2(log(1/δ))3/2

ε
+ κM + κ2V +

dκγ(log(1/δ))1/2

ε

)
(9)

with a large enough constant and δ ≤ 1/n, then there exists a positive universal constant c1 and a choice of learning
rate ηt that depends on (t,M, V,K, a, λ1, λ1 − λ2, n, d, ε, δ) such that T = ⌊n/B⌋ steps in Algorithm 3 with choices
of τ = 0.01 and B = c1n/(log n)

2, outputs ωT such that with probability 0.99,

sin(wT , v1) = Õ

(
κ(

√
V

n
+

γd
√

log(1/δ)

εn

)
(10)

where Õ(·) hides poly-logarithmic factors in n, d, 1/ε, and log(1/δ) and polynomial factors in K.

18

We can see this, because the utility bound of DP-PCA depends on several constants originating form constraints on
the data:

1. κ = λ1

λ1−λ2

2. M so that ∥Ai − Σ∥2 ≤ λ1M almost surely

3. V so that max{∥E[(Ai − Σ)(Ai − Σ)⊤]∥2, ∥, ∥E[(Ai − Σ)⊤(Ai − Σ)]∥2} ≤ λ2
1V

4. γ2 := max∥u∥=1 ∥Hu∥2

5. K so that max∥u∥=1,∥v∥=1 E
[
exp

(
(
|u⊤(A⊤

i −Σ)v|2
K2λ2

1∥Hu∥2
)1/(2a)

)]
≤ 1

now if we replace the {Ai} with {PAiP} where P is a projection matrix, the constants M,V, λ2
1γ

2 and K will
still remain upper bounds (see Lemma A.9, Lemma A.10, Lemma A.12). Therefore, if we just swapped κ to be
λ1(PΣP)/(λ1(PΣP)− λ2(PΣP)) in the bound below it would still qualify as a utility bound for {PAiP} as input
to our modified DP-PCA algorithm

ξ = κBn (11)

where

Bn = Õ

(√
V

n
+

γd
√

log(1/δ)

εn

)
so for k = 2 Lemma D.3 will give us a utility bound independent of P . However, we want to obtain a utility guarantee
for arbitrary k < d. From now on we will denote

κi :=
λ1(Pi−1ΣPi−1)

λ1(Pi−1ΣPi−1)− λ2(Pi−1ΣPi−1)

ξi := κi ·Bn (upper bound ont the utility of the vector returned at step i)

and the goal is to upper bound κi with something independent of P . If we iteratively applying Lemma D.3 we get

κi ≤
λi(Σ) +

∑i−1
j=1 ∆j

λi(Σ)− λi+1(Σ)− 2
∑i−1

j=1 ∆j

where ∆j = cλ1(Pj−1ΣPj−1)ξj (∆0 := 0 for completeness). Now the problem is that ∆j still depends on previous
projections and it’s not even clear in general if ξj > ξj+1 or the other way around. Ultimately we want to have an
upper bound for all ξj , to get a utility bound for U = {ui}. A natural approach is to try and choose n big enough so
that

λ1(PiΣPi) ≤ λ1

λ1(PiΣPi)− λ2(PiΣPi) ≥ δ

for some δ > 0 then we are done. As this will guarantee that

ξi ≤
λ1

δ
Bn

which scales with λ1 which guarantees that in the spiked covariance model the noise will vanish for σ → 0.
Lemma D.5. If for k fixed, 0 < ∆ = mini∈[k] λi − λi+1 and a 0 < δ < ∆ and given C > 1, we are given {Ai}ni=1
fulfilling Assumption A and n is big enough so that

Bn/k ≤
(∆− δ)δ

Ckλ2
1

then the utility ξi of the vector ui returned at step i ∈ [k] of Algorithm 2 fulfills

ξi ≤
λ1

δ
Bn/k

Proof. We will proof that at every step:

λ1(PiΣPi) ≤ λ1 (12)
λ1(PiΣPi)− λ2(PiΣPi) ≥ δ (13)

19

is fulfilled, which directly implies what we are trying to proof. We will proof these two statements by induction. For
k = 1 we have P0 = I which straightaway gives us equation 12. And as δ is smaller then the minium eigengap
equation 13, directly follows as well. For k + 1 we start with showing equation 12. By Lemma D.3

λ1(PkΣPk) ≤ λk+1(Σ) +

k∑
j=1

∆j

first let’s upper bound
∑k

j=1 ∆j by induction assumption:
k∑

j=1

∆j =

k∑
j=1

c
λ2
1(Pj−1ΣPj−1)

λ1(Pj−1ΣPj−1)− λ2(Pj−1ΣPj−1)
·Bn

≤ cBn/k ·
k∑

j=1

λ2
1

δ

so equation 12 will be implied by

Bn/k ≤ (λ1 − λk+1) ·
δ

ckλ2
1

which is surely fulfilled as by assumption

Bn/k ≤
(∆− δ)δ

ckλ2
1

To show equation 13, we see

λ1(PkΣPk)− λ2(PkΣPk) ≥ λk+1(Σ)− λk+2(Σ)− 2

k∑
j=1

∆j

≥ ∆− 2

k∑
j=1

∆j

where the first inequality follows by Lemma D.3 and the second by definition of ∆. Using the upper bound on∑k
j=1 ∆j we established

Bn/k ≤
(∆− δ)δ

ckλ2
1

will imply equation 13.

We will now combine all of this to proof our main theorem:

Proof of Theorem ?? By Theorem D.1 we know that when passing m = n/k Ai at every step of our deflation method
we obtain a vector ui fulfilling

sin(ui, vi) ≤ Õ

(
λ1(PΣP)

λ1(PΣP)− λ2(PΣP)

(√
V k

n
+

γdk
√

log(1/δ)

εn

))
where vi is the top eigenvector of Pi−1ΣPi−1. Which by Lemma B.1 give us

⟨uiu
⊤
i , Pi−1ΣPi−1⟩ ≥ (1− ζ2i)⟨viv⊤i , Pi−1ΣPi−1⟩

with ζi = Õ

(
λ1(PΣP)

λ1(PΣP)−λ2(PΣP)

(√
V k
n +

γdk
√

log(1/δ)

εn

))
. By our choice of n we know by Lemma D.5 that

ζi ≤ Õ

(
λ1

∆

(√
V k

n
+

γdk
√
log(1/δ)

εn

))
where we used that (∆− δ)δ is maximized by δ = ∆/2. So finally Theorem B.2 gives us that

⟨UU⊤,Σ⟩ ≥ (1− ζ2)⟨VkV
⊤
k ,Σ⟩ (14)

where Vk is the matrix obtained by non private k-PCA.

E Algorithms used in Modified DP-PCA

Below we describe the two subroutines that estimate the eigenvalue and mean of the gradients.

20

Algorithm 5 Top-Eigenvalue-Estimation, Algorithm 4 in [Liu et al., 2022]
Input: S = {gi}B=1 , privacy parameters (ε, δ), failure probability τ ∈ (0, 1)

1: g̃i ← g2i − g2i−1 for i ∈ 1, 2, . . . , ⌊B/2⌋
2: S̃ = {g̃i}⌊B/2⌋

=1

3: Partition S̃ into k = C1 log(1/(δτ)/ε subsets and denote each dataset as Gj ∈ Gj ∈ Rd×b (where b = ⌊B/2k⌋
is the size of the dataset)

4: λ
(j)
1 ← top eigenvalue of (1/b)GjG

⊤
j for all j ∈ [k]

5: Ω← {. . . , [2−2/4, 2−1/4), [1, 21/4), . . . }
6: run (ε, δ)-DP histogram learner on Ω
7: if all bins are empty then
8: return ⊥
9: else

10: for [l, r] the bn with the maximum number of points
11: return Λ̂ = l
12: end if

Algorithm 6 Private-Mean-Estimation, Algorithm 5 in [Liu et al., 2022]
Input: S = {gi}B=1 , privacy parameters (ε, δ), target error α, failure probability τ ∈ (0, 1), approximate top eigen-
value Λ̂

1: let τ = 21/4K
√
Λ̂ log2(25)

2: for j = 1, 2, . . . , d do
3: Run (ε

4
√

2d log(4/δ)
, δ
4d)-DP histogram learner of Lemma on {gij}i∈[B]

4: Let [l, h] be the bucket that contains maximum number of points in the private histogram
5: ḡj ← l

6: Truncate the j-th coordinate of gradient {gi}i∈[B] by [ḡj − 3K
√
Λ̂ loga(BD/τ), ḡj +3K

√
Λ̂ loga(BD/τ)].

7: Let g̃i be the truncated version of gi
8: end for
9: Compute empirical mean of truncated gradients µ̃ = (1/B)

∑B
i=1 g̃i and add Gaussian noise:

µ̂ = µ̃+N

0,

(
12K

√
Λ̂ loga(BD/τ)

√
2d log(2.5/δ)

εB

)2

Id


10: return µ̂

21

	Introduction
	Problem formulation and Main Theorem
	Algorithm and Proof Sketch
	Mathematics Preliminaries
	Stochastic Black Box PCA
	Novel Analysis of non private Oja's Algorithm
	Proof of Main Theorem
	Algorithms used in Modified DP-PCA

